Tag Archives: christoph winkler

Transcriptional enhancement of Smn levels in motoneurons is crucial for proper axon morphology in zebrafish

by Zoltan Spiro, Angela Koh, Shermaine Tay, Kelvin See, Christoph Winkler

Scientific Reports 6, 2016  (07 June 2016)

An unresolved mystery in the field of spinal muscular atrophy (SMA) is why a reduction of the ubiquitously expressed Smn protein causes defects mostly in motoneurons. We addressed the possibility that this restricted vulnerability stems from elevated Smn expression in motoneurons. To explore this, we established an ex vivo zebrafish culture system of GFP-marked motoneurons to quantitatively measure Smn protein and smn mRNA levels as well as promoter activity in motoneurons versus other cell types. Importantly, we uncovered that Smn levels are elevated in motoneurons by means of transcriptional activation. In addition, we identified the ETS family transcription factor Etv5b to be responsible for increased smn transcription in motoneurons. Moreover, we established that the additional supply of Smn protein in motoneurons is necessary for proper axonogenesis in a cell-autonomous manner. These findings demonstrate the reliance of motoneurons on more Smn, thereby adding a novel piece of evidence for their increased vulnerability under SMA conditions.

Read online: Scientific Reports

A col10a1: nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization

by Joerg Renn, Anita Büttner, Thuy Thanh To, Sherlynn Jin Hui Chan and Christoph Winkler

Dev Biol 2013 Sep 1;381(1):134-43

In teleosts, such as medaka, ossification of the vertebral column starts with the mineralization of the notochordal sheath in a segmental pattern. This establishes the chordal centrum, which serves as the basis for further ossifications by sclerotome derived osteoblasts generating the vertebral body.

So far, it is unclear which cells produce the notochordal sheath and how a segmental pattern of mineralization is established in teleosts. Here, we use a transgenic medaka line that expresses nlGFP under the control of the col10a1 promoter for in vivo analysis of vertebral body formation. We show that col10a1:nlGFP expression recapitulates endogenous col10a1 expression.

In the axial skeleton, col10a1:nlGFP cells appear prior to the mineralization of the notochordal sheath in a segmental pattern. These cells remain on the outer surface of the chordal centra during mineralization as well as subsequent perichordal ossification of the vertebral bodies. Using twist1a1:dsRed and osx:mCherry transgenic lines we show that a subset of col10a1:nlGFP cells is derived from sclerotomal precursors and differentiates into future osteoblasts.

For the first time, this shows a segmental occurrence of putative osteoblast precursors in the vertebral centra prior to ossification of the notochordal sheath. This opens the possibility that sclerotome derived cells in teleosts are implicated in the establishment of the mineralized vertebral column in a similar manner as previously described for tetrapods.

Read online: Pubmed.

Learn more about Christoph Winkler’s research.