CBIS welcomes Prof Ashok Venkitaraman, Director, MRC Cancer Unit, University of Cambridge

Ashok VenkitaramanProfessor Ashok Venkitaraman

CBIS is pleased to welcome Prof Ashok Venkitaraman, Director, MRC Cancer Unit, The Ursula Zoellner Professor of Cancer Research, University of Cambridge

He will be arriving in Singapore on 13 September 2016 and will be with us until 22 October 2016.

He will be spending half of his time at MBI and half at CBIS. His CBIS office is room #02-15. His email is pa-venkitaraman@mrc-cu.cam.ac.uk.


Ashok is the Ursula Zoellner Professor of Cancer Research at the University of Cambridge, and the Director of the Medical Research Council (MRC) Cancer Unit. He trained in medicine at the Christian Medical College, Vellore, India, before completing his PhD at University College London. Ashok was a faculty member at the Medical Research Council’s Laboratory of Molecular Biology in Cambridge, before appointment to the Zoellner Professorship in 1998.

Ashok is widely recognized for his contributions to understanding the genetics and biology of cancer, particularly in elucidating the impact of genome instability on carcinogenesis and cancer therapy. His research has not only illuminated the fundamental mechanisms governing genome repair, replication and segregation during cell division, but has also provided insight into their connections with cancer pathogenesis and treatment.

Translation of these insights to clinical practice is a major focus in Ashok’s current work. He has been instrumental in establishing initiatives that link chemists, physicists, structural biologists, cancer biologists and clinicians in Cambridge and elsewhere, with the aim to pioneer innovative new approaches for the discovery and early clinical development of next-generation medicines.

Ashok was elected a Fellow of the Academy of Medical Sciences, London, in 2001 and a Member of the EMBO European academy, Heidelberg, in 2004.

Learn more about Prof Venkitaraman.

Recruiting research assistant in statistical optics

Fast electron detectors are rapidly changing electron microscopy. These detectors allow probabilistic imaging of very many noisy, incomplete, chance observations that are then statistically classified and interpreted. This mode of imaging has enabled unprecedented high resolution imaging of dynamical and heterogeneous systems.

The Centre for BioImaging Sciences at the National University of Singapore is one of the few places in the world that develops new algorithmic approaches in such probabilistic electron microscopy. We are looking for motivated, aspiring scientists who would like to join us in developing this emerging field of statistical electron microscopy.

Frequency and amplitude control of cortical oscillations by phosphoinositide waves

by Ding Xiong, Shengping Xiao, Su Guo, Qinsong Lin, Fubito Nakatsu & Min Wu

Nature Chemical Biology (2016) doi:10.1038/nchembio.2000
Published online 11 January 2016

Rhythmicity is prevalent in the cortical dynamics of diverse single and multicellular systems. Current models of cortical oscillations focus primarily on cytoskeleton-based feedbacks, but information on signals upstream of the actin cytoskeleton is limited. In addition, inhibitory mechanisms—especially local inhibitory mechanisms, which ensure proper spatial and kinetic controls of activation—are not well understood. Here, we identified two phosphoinositide phosphatases, synaptojanin 2 and SHIP1, that function in periodic traveling waves of rat basophilic leukemia (RBL) mast cells. The local, phase-shifted activation of lipid phosphatases generates sequential waves of phosphoinositides. By acutely perturbing phosphoinositide composition using optogenetic methods, we showed that pulses of PtdIns(4,5)P2 regulate the amplitude of cyclic membrane waves while PtdIns(3,4)P2 sets the frequency. Collectively, these data suggest that the spatiotemporal dynamics of lipid metabolism have a key role in governing cortical oscillations and reveal how phosphatidylinositol 3-kinases (PI3K) activity could be frequency-encoded by a phosphatase-dependent inhibitory reaction.

Read online: Nature Chemical Biology.

Learn more about Wu Min‘s research.